English

∫ 2 X 2 + 7 X − 3 X 2 ( 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( 2 x^2 + 7x - 3 \right) dx}{x^2 \left( 2x + 1 \right)}\]

\[\text{Let }\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x + 1}\]

\[ \Rightarrow \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A \left( x \right) \left( 2x + 1 \right) + B \left( 2x + 1 \right) + C x^2}{x^2 \left( 2x + 1 \right)}\]

\[ \Rightarrow 2 x^2 + 7x - 3 = A \left( 2 x^2 + x \right) + B \left( 2x + 1 \right) + C x^2 \]

\[ \Rightarrow 2 x^2 + 7x - 3 = \left( 2A + C \right) x^2 + \left( A + 2B \right)x + B\]

\[\text{Equating coefficients of like terms}\]

\[2A + C = 2 . . . . . \left( 1 \right)\]

\[A + 2B = 7 . . . . . \left( 2 \right)\]

\[B = - 3 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 13\]

\[B = - 3\]

\[C = - 24\]

\[ \therefore \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{13}{x} - \frac{3}{x^2} - \frac{24}{2x + 1}\]

\[ \Rightarrow I = 13\int\frac{dx}{x} - 3\int x^{- 2} dx - 24\int\frac{dx}{2x + 1}\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 24 \frac{\log \left| 2x + 1 \right|}{2} + C\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 12 \log \left| 2x + 1 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 33 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×