हिंदी

∫ 2 X 2 + 7 X − 3 X 2 ( 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{\left( 2 x^2 + 7x - 3 \right) dx}{x^2 \left( 2x + 1 \right)}\]

\[\text{Let }\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x + 1}\]

\[ \Rightarrow \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A \left( x \right) \left( 2x + 1 \right) + B \left( 2x + 1 \right) + C x^2}{x^2 \left( 2x + 1 \right)}\]

\[ \Rightarrow 2 x^2 + 7x - 3 = A \left( 2 x^2 + x \right) + B \left( 2x + 1 \right) + C x^2 \]

\[ \Rightarrow 2 x^2 + 7x - 3 = \left( 2A + C \right) x^2 + \left( A + 2B \right)x + B\]

\[\text{Equating coefficients of like terms}\]

\[2A + C = 2 . . . . . \left( 1 \right)\]

\[A + 2B = 7 . . . . . \left( 2 \right)\]

\[B = - 3 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 13\]

\[B = - 3\]

\[C = - 24\]

\[ \therefore \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{13}{x} - \frac{3}{x^2} - \frac{24}{2x + 1}\]

\[ \Rightarrow I = 13\int\frac{dx}{x} - 3\int x^{- 2} dx - 24\int\frac{dx}{2x + 1}\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 24 \frac{\log \left| 2x + 1 \right|}{2} + C\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 12 \log \left| 2x + 1 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 33 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×