Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
योग
उत्तर
` ∫ { cos x dx}/{sin^2 x + 4\sin x + 5}`
\[\text{ let }\sin x = t\]
\[ \Rightarrow \text{cos x dx }= dt\]
Now, ` ∫ { cos x dx}/{sin^2 x + 4\sin x + 5}`
\[ = \int\frac{dt}{t^2 + 4t + 5}\]
\[ = \int\frac{dt}{t^2 + 2 \times t \times 2 + 4 + 1}\]
\[ = \int\frac{dt}{\left( t + 2 \right)^2 + 1^2}\]
\[ = \frac{1}{1} \tan^{- 1} \left( \frac{t + 2}{1} \right) + C\]
\[ = \tan^{- 1} \left( \sin x + 2 \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`