Advertisements
Advertisements
प्रश्न
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
विकल्प
ex f (x) + C
ex + f (x)
2ex f (x)
ex − f (x)
MCQ
उत्तर
ex f (x) + C
\[\text{Let }I = \int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\}dx\]
\[\text{Putting }e^x f\left( x \right) = t\]
\[ \Rightarrow \left[ e^x \cdot f\left( x \right) + e^x f'\left( x \right) \right]dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x f\left( x \right) + C .............\left[ \because t = e^x f\left( x \right) \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \cos x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int \sin^2\text{ b x dx}\]
` ∫ cos mx cos nx dx `
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]