हिंदी

∫ Tan − 1 ( 2 X 1 − X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[ = 2\int 1_{II} . \tan^{- 1} x_I \text{ dx }\]
\[ = 2 \left[ \tan^{- 1} x\int1 \text{  dx }- \int\left\{ \frac{d}{dx}\left\{ \tan^{- 1} x \right\}\int1 \text{ dx    }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times \text{ x dx } \right]\]
\[ = 2 \tan^{- 1} x . x - \int \frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 43 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×