हिंदी

∫ Cos − 1 ( 4 X 3 − 3 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
योग

उत्तर

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right)\text{ dx }\]

\[\text{ Let x } = \cos \theta \]

\[ \Rightarrow \theta = \cos^{- 1} x\]

\[\text{and}\ dx = - \sin \text{ θ  dθ }\]

\[ \therefore \int \cos^{- 1} \left( 4 x^3 - 3x \right)dx = \int \cos^{- 1} \left( 4 \cos^3 \theta - 3 \cos \theta \right) . \left( - \sin \theta \right)d\theta\]

\[ = \int \cos^{- 1} \left( \text{ cos 3 }\theta \right) . \left( - \sin \theta \right)d\theta \left( \because \text{ cos } \text{ 3 θ }= 4 \cos^3 \theta - 3 \cos \theta \right)\]

\[ = - 3 \int \theta_I \sin_{II} \text{ θ  dθ }\]

\[ = \theta\int\sin \text{ θ  dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{ θ  dθ }\right\}d\theta\]

\[ = 3 \left[ \theta \left( - \cos \theta \right) - \int1 . \left( - \cos \theta \right)d\theta \right]\]

\[ = 3\theta \cos \theta - 3 \sin \theta + C \]

\[ = 3 \cos^{- 1} x . x - 3\sqrt{1 - x^2} + C \left( \because x = \cos \theta \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 41 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \cos^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×