Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{x + 1} + \sqrt{x}}\]
Rationalise the denominator
\[= \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{\left( \sqrt{x + 1} + \sqrt{x} \right)\left( \sqrt{x + 1} - \sqrt{x} \right)}dx\]
\[ = \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{\left( x + 1 \right) - x}dx\]
\[ = \int \left( x + 1 \right)^\frac{1}{2} dx - \int x^\frac{1}{2} dx\]
\[ = \frac{\left( x + 1 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1}\]
\[ = \frac{2}{3} \left( x + 1 \right)^\frac{3}{2} - \frac{2}{3} x^\frac{3}{2} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
`∫ cos ^4 2x dx `
` ∫ cos mx cos nx dx `
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]