हिंदी

∫ 1 √ 2 X + 3 + √ 2 X − 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
योग

उत्तर

\[\int\frac{dx}{\left( \sqrt{2x + 3} + \sqrt{2x} - 3 \right)}\]

Rationalise the denominator

\[= \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( \sqrt{2x + 3} + \sqrt{2x - 3} \right)\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}dx\]
\[ = \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( 2x + 3 \right) - \left( 2x - 3 \right)}dx\]
\[ = \frac{1}{6}\int \left( 2x + 3 \right)^\frac{1}{2} dx - \frac{1}{6}\int \left( 2x - 3 \right)^\frac{1}{2} dx\]
\[ = \frac{1}{6}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] - \frac{1}{6}\left[ \frac{\left( 2x - 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] + C\]
\[ = \frac{1}{18}\left\{ \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x - 3 \right)^\frac{3}{2} \right\} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 6 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×