हिंदी

Evaluate the Following Integrals: ∫ X 7 ( a 2 − X 2 ) 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
योग

उत्तर

\[\text{Let I} = \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[ \text{Let x} = a \sin\theta\]

\[ \text{On differentiating both sides, we get}\]

`  dx =  a  cos  θ  dθ `

\[ \therefore I = \int\frac{a^8 \sin^7 \theta \cos\theta}{\left( a^2 - a^2 \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{a^8 \sin^7 \theta \cos\theta}{a^{10} \left( 1 - \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{\sin^7 \theta}{a^2 \cos^9 \theta}d\theta\]

\[ = \frac{1}{a^2}\int \tan^7 \theta \sec^2 \theta d\theta\]

\[\]

\[ \text{Let} \tan\theta = t\]

` " On differentiating both sides, we get" `

`sec^2 θ  dθ  = dt`

\[ \therefore I = \frac{1}{a^2}\int t^7 dt\]

\[ = \frac{1}{a^2}\frac{t^8}{8} + c\]

\[ = \frac{1}{8 a^2}\left( \tan^8 \theta \right) + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \sin^{- 1} \frac{x}{a} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \tan^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \frac{x}{\sqrt{a^2 - x^2}} \right)^8 + c\]

\[ = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

\[Hence, \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.13 | Q 2 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2\text{ b x dx}\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \cos^2 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×