हिंदी

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^5 x  \text{ dx }\]
योग

उत्तर

∫ cot5 x dx
= ∫ cot4 x . cot x dx 

= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx

= ∫ cosec4 x . cot x dx – 2 ​∫ cot x . cosec2 x dx + ​∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ​∫ cot x cosec2 x dx + ∫​ cot x dx

=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx

Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1

I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt

⇒ cosec2 x dx = – dt

I1= ∫ (t + t3) (– dt) – 2​∫ t (–dt)
= –∫(t + t3) + 2​∫t dt

\[= \left[ - \frac{t^2}{2} - \frac{t^4}{4} \right] + 2 . \frac{t^2}{2} + C_1 \]
\[ = \frac{t^2}{2} - \frac{t^4}{4} + C_1 \]
\[ = \frac{\cot^2 x}{2} - \frac{\cot^4 x}{4} + C_1\]

Now we integrate I2
I2= ∫ cot x dx

= \[\log\left| \sin x \right| + C_2\]

Now, ∫ cot5 x dx=I1 + I2]

\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \text{sin x }\right| + C_1 + C_2\]
\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \sin x \right| + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.11 | Q 11 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×