Advertisements
Advertisements
प्रश्न
उत्तर
∫ cot5 x dx
= ∫ cot4 x . cot x dx
= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx
= ∫ cosec4 x . cot x dx – 2 ∫ cot x . cosec2 x dx + ∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1
I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt
⇒ cosec2 x dx = – dt
I1= ∫ (t + t3) (– dt) – 2∫ t (–dt)
= –∫(t + t3) + 2∫t dt
\[= \left[ - \frac{t^2}{2} - \frac{t^4}{4} \right] + 2 . \frac{t^2}{2} + C_1 \]
\[ = \frac{t^2}{2} - \frac{t^4}{4} + C_1 \]
\[ = \frac{\cot^2 x}{2} - \frac{\cot^4 x}{4} + C_1\]
Now we integrate I2
I2= ∫ cot x dx
Now, ∫ cot5 x dx=I1 + I2]
APPEARS IN
संबंधित प्रश्न
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]