हिंदी

∫ X ( Sec 2 X − 1 Sec 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
योग

उत्तर

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right)dx\]
\[ = \int x \left( \frac{\frac{1}{\cos 2x} - 1}{\frac{1}{\cos 2x} + 1} \right)dx\]
\[ = \int x \left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]
\[ = \int x \left( \frac{2 \sin^2 x}{2 \cos^2 x} \right)dx \left[ \because \left( 1 - \cos 2x \right) = 2 \sin^2 x and \left( 1 + \cos 2x \right) = 2 \cos^2 x \right]\]
\[ = \int x . \tan^2 \text{ x dx  }\]
\[ = \int x . \left( \sec^2 x - 1 \right) dx\]
\[ = \int x_I . \sec^2_{II}   \text{ x   dx } - \int \text{ x dx }\]
\[ = x\int \sec^2\text{  x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\sec^2  \text{ x  dx }\right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log  }\left| \sec x \right| - \frac{x^2}{2} + C_2 + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C \left( \text{ where C} = C_1 + C_2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 33 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int {cosec}^3 x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×