हिंदी

∫ ( 3 Sin X − 2 ) Cos X 13 − Cos 2 X − 7 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
योग

उत्तर

I= \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
 

  =  \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 -(1 -  \ sin ^2  x) - 7\sin x}dx\]    `(∵  cos^2x =1 - sin^2 x)`
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 7\sin x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 4\sin x - 3\text{ sin } x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\sin x\left( \sin x - 4 \right) - 3\left( \sin x - 4 \right)}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right)\cos x}{\left( \sin x - 3 \right)\left( \sin x - 4 \right)}dx\]

\[\text{ Let sin x }= t\]
\[ \Rightarrow \text{  cos x dx }= dt\]
\[ \therefore I = \int\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)}dt\]

Using partial fraction, we get

\[\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)} = \frac{A}{\left( t - 3 \right)} + \frac{B}{\left( t - 4 \right)} = \frac{A\left( t - 4 \right) + B\left( t - 3 \right)}{\left( t - 3 \right)\left( t - 4 \right)}\]
\[ \Rightarrow 3t - 2 = (A + B)t - 4A - 3B\]

Comparing coefficients, we get

A = - 7 and = 10

So, 

\[I = - 7\int\frac{1}{\left( t - 3 \right)}dt + 10\int\frac{1}{\left( t - 4 \right)}dt\]

\[\Rightarrow I = - 7\text{ ln }\left| t - 3 \right| + 10\text{ ln}\left| t - 4 \right| + c\]
\[ \therefore I = - 7\text{ ln }\left| \sin x - 3 \right| + 10 \text{ ln }\left| \sin x - 4 \right| + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 14 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×