Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int {1_{II} \cdot \log}_{} \left( x + \sqrt{x^2_I + a^2} \right)\text{ dx}\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right)\int1 \text{ dx} - \int\left[ \frac{d}{dx}\left\{ \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \right\}\int1\text{ dx} \right]\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\left( \frac{1}{x + \sqrt{x^2 + a^2}} \right) \times \left( 1 + \frac{1 \times 2x}{2\sqrt{x^2 + a^2}} \right) \cdot x \cdot dx\]
\[ = \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\frac{x}{\sqrt{x^2 + a^2}}dx\]
\[\text{Putting x}^2 + a^2 = t\ \text{in the second integra}l\]
\[ \Rightarrow\text{ 2x dx = dt}\]
\[ \Rightarrow x \text{ dx }= \frac{dt}{2}\]
\[ \therefore I = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = x \cdot \text{ log} \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int t^{- \frac{1}{2}} dt\]
\[ = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{t} + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{x^2 - a^2} + C.............. \left[ \because t = x^2 + a^2 \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ \sqrt{tan x} sec^4 x dx `
Evaluate the following integrals:
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Evaluate the following integral:
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then