हिंदी

∫ Log ( X + √ X 2 + a 2 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
योग

उत्तर

\[Let I = \int {1_{II} \cdot \log}_{} \left( x + \sqrt{x^2_I + a^2} \right)\text{ dx}\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right)\int1 \text{ dx} - \int\left[ \frac{d}{dx}\left\{ \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \right\}\int1\text{ dx} \right]\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\left( \frac{1}{x + \sqrt{x^2 + a^2}} \right) \times \left( 1 + \frac{1 \times 2x}{2\sqrt{x^2 + a^2}} \right) \cdot x \cdot dx\]
\[ = \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\frac{x}{\sqrt{x^2 + a^2}}dx\]
\[\text{Putting   x}^2 + a^2 = t\ \text{in the second integra}l\]
\[ \Rightarrow\text{  2x  dx = dt}\]
\[ \Rightarrow x \text{ dx }= \frac{dt}{2}\]
\[ \therefore I = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = x \cdot \text{ log} \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int t^{- \frac{1}{2}} dt\]
\[ = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{t} + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{x^2 - a^2} + C.............. \left[ \because t = x^2 + a^2 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 97 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×