हिंदी

∫ Sin − 1 ( 3 X − 4 X 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
योग

उत्तर

\[\int\]  sin–1 (3x – 4x3)dx
Let x = sin θ
⇒ dx = cos​ θ.dθ
θ = sin–1 x

\[\int\]  sin–1 (3x – 4x3)dx =
\[\int\]  sin–1 (3 sin ​θ – 4 sin3 ​θ) . cos ​θ d​θ
                                = ∫ sin–1 (sin 3​θ) . cos ​θ d​θ

\[= 3\int \theta_I . \cos _{II} \theta   d\theta\]

\[ = 3\left[ \theta\int\cos \theta d\theta - \int\left\{ \frac{d}{d\theta}\left( \theta \right) - \int\cos \theta d\theta \right\}d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta - \int1 . \sin \theta d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta + \cos \theta \right] + C\]

\[ = 3\left[ \theta . \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]

\[ = 3\left[ \left( \sin^{- 1} x \right) . x + \sqrt{1 - x^2} \right] + C \left( \because \theta = \sin^{- 1} x \right)\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 35 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×