Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\text{ sin} \left( x - a \right) \cdot \text{ sin}\left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left( b - a \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin }\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left[ \left( x - a \right) - \left( x - b \right) \right]}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin }\left( b - a \right)}\int\frac{\text{ sin }\left( x - a \right) \cdot \cos \left( x - b \right) - \text{ cos} \left( x - a \right) \text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \frac{\text{ sin}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} - \frac{\text{ cos}\left( x - a \right) \text{ sin}\left( x - b \right)}{\sin \left( x - a \right) \text{ sin}\left( x - b \right)} \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \text{ cot}\left( x - b \right) - \text{ cot}\left( x - a \right) \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\text{ cot}\left( x - b \right) dx - \int\text{ cot}\left( x - a \right) \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \text{ sin}\left( x - b \right) \right| - \text{ ln} \left| \text{ sin}\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{- 1}{\text{ sin}\left( a - b \right)}\left[ \text{ ln}\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( a - b \right)} \text{ ln }\left| \frac{\text{ sin}\left( x - a \right)}{\sin \left( x - b \right)} \right| + C\]
APPEARS IN
संबंधित प्रश्न
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]