हिंदी

∫ 1 Sin ( X − a ) Sin ( X − B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
योग

उत्तर

\[\int\frac{1}{\text{ sin} \left( x - a \right) \cdot \text{ sin}\left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left( b - a \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin }\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left[ \left( x - a \right) - \left( x - b \right) \right]}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin }\left( b - a \right)}\int\frac{\text{ sin }\left( x - a \right) \cdot \cos \left( x - b \right) - \text{ cos} \left( x - a \right) \text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \frac{\text{ sin}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} - \frac{\text{ cos}\left( x - a \right) \text{ sin}\left( x - b \right)}{\sin \left( x - a \right) \text{ sin}\left( x - b \right)} \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \text{ cot}\left( x - b \right) - \text{ cot}\left( x - a \right) \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\text{ cot}\left( x - b \right) dx - \int\text{ cot}\left( x - a \right) \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \text{ sin}\left( x - b \right) \right| - \text{ ln} \left| \text{ sin}\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{- 1}{\text{ sin}\left( a - b \right)}\left[ \text{ ln}\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( a - b \right)} \text{ ln }\left| \frac{\text{ sin}\left( x - a \right)}{\sin \left( x - b \right)} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 24 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int"x"^"n"."log"  "x"  "dx"`

 
` ∫  x tan ^2 x dx 

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×