मराठी

∫ 1 Sin ( X − a ) Sin ( X − B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{1}{\text{ sin} \left( x - a \right) \cdot \text{ sin}\left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left( b - a \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin }\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left[ \left( x - a \right) - \left( x - b \right) \right]}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin }\left( b - a \right)}\int\frac{\text{ sin }\left( x - a \right) \cdot \cos \left( x - b \right) - \text{ cos} \left( x - a \right) \text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \frac{\text{ sin}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} - \frac{\text{ cos}\left( x - a \right) \text{ sin}\left( x - b \right)}{\sin \left( x - a \right) \text{ sin}\left( x - b \right)} \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \text{ cot}\left( x - b \right) - \text{ cot}\left( x - a \right) \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\text{ cot}\left( x - b \right) dx - \int\text{ cot}\left( x - a \right) \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \text{ sin}\left( x - b \right) \right| - \text{ ln} \left| \text{ sin}\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{- 1}{\text{ sin}\left( a - b \right)}\left[ \text{ ln}\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( a - b \right)} \text{ ln }\left| \frac{\text{ sin}\left( x - a \right)}{\sin \left( x - b \right)} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 24 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×