मराठी

∫ 1 Sin X Cos 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \cos^3 x} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sin x . \cos^3 x}\]

` "Dividing  numerator  and  denominaor by " cos^4 x `
\[ = \int\frac{\frac{1}{\cos^4 x} dx}{\frac{\sin x . \cos^3 x}{\cos^4 x}}\]
`  ∫   { . sec^4 x   dx}/{tan x}`
`  ∫   {sec^2 x . sec^2 x   dx}/{tan x}`
\[ = \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx\]
\[Let \tan x = t\]
` ⇒  sec^2  x   = dx / dt`
` ⇒  sec^2  x  dx = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx \]
\[ = \int\frac{\left( 1 + t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t \right)dt\]
\[ = \text{log} \left| \text{t} \right| + \frac{t^2}{2} + C\]
\[ = \text{log }\left| \tan x \right| + \frac{\tan^2 x}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.12 | Q 13 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x \sin x \cos x\ dx\]

 


\[\int\cos\sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \tan^5 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×