मराठी

∫1cosx-sinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

`int 1/(cos x - sin x)dx`
बेरीज

उत्तर

Given I = `int 1/(cos x - sin x)dx`

We know that sin x = `(2 tan (x/2))/(1 + tan^2 (x/2)) and cos x = (1 - tan^2 (x/2))/(1 + tan^2 (x/2))`

⇒ `int 1/(-sin x + cos x)dx = int 1/(- (2 tan (x/2))/(1 + tan^2 (x/2)) + (1 - tan^2 (x/2))/(1 + tan^2 (x/2)))`

= `int (1 + tan^2 (x/2))/(-2 tan (x/2)+1 - tan^2 (x/2))dx`

Replacing 1 + tan2 x/2 in numerator by sec2 x/2 and putting tan x/2 = t and sec2 x/2 dx = 

⇒ `int (1 + tan^2 (x/2))/(-2 tan (x/2) + 1 - tan^2 (x/2))dx`

= `int (sec^2 (x/2))/(- tan^2 (x/2) - 2 tan (x/2) + 1) dx`

= `- int (2dt)/(t^2 + 2t - 1)`

= `-2 int 1/((t + 1)^2 - (sqrt2)^2)dt`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

We know that `int 1/(a^2 - x^2)dx = 1/(2a) log |(a + x)/(a - x)| + c`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

= `2/(2sqrt2)log|(sqrt2 + t + 1)/(sqrt2 - t - 1)|+c`

= `1/sqrt2 log|(sqrt2 + tan (x/2)+1)/(sqrt2 - tan (x/2)-1)| + c`

= `1/sqrt2 log |(sqrt2 + tan (x/2) +1)/(sqrt2 - tan (x/2)-1)| + c`

∴ I = `int 1/(cos x - sin x)dx = 1/sqrt2 log |(sqrt2 + tan (x/2)+ 1)/(sqrt2 - tan (x/2) - 1)|+x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 8 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×