मराठी

∫ X + 2 2 X 2 + 6 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]
बेरीज

उत्तर

\[\int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[x + 2 = A\frac{d}{dx}\left( 2 x^2 + 6x + 5 \right) + B\]
\[x + 2 = A \left( 4x + 6 \right) + B\]
\[x + 2 = \left( 4 A \right) x + 6 A + B\]

Comparing the Coefficients of like powers of x

\[\text{ 4 A }= 1\]
\[A = \frac{1}{4}\]
\[\text{ 6 A + B } = 2\]
\[6 \times \frac{1}{4} + B = 2\]
\[B = \frac{1}{2}\]

\[\therefore \int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[ = \int\left[ \frac{\frac{1}{4}\left( 4x + 6 \right) + \frac{1}{2}}{2 x^2 + 6x + 5} \right]dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{2}\int\frac{1}{2 x^2 + 6x + 5}dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \frac{1}{4}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{4} \text{  log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{4} \times 2 \text{ tan}^{- 1} \left( \frac{x + \frac{3}{2}}{\frac{1}{2}} \right) + C\]
\[ = \frac{1}{4} \text{ log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( 2x + 3 \right) + C\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 11 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos^5 x}{\sin x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫      tan^5    x   dx `


\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×