मराठी

∫ ( Log X ) 2 ⋅ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( \log x \right)^2 \cdot x\ dx\]
बेरीज

उत्तर

\[\int \left( \log x \right)_{}^2 {x \cdot}    dx\]
`    "Taking  log x"^2" as the first function and x as the second function ". `
\[ = \left( \log x \right)^2 \int xdx - \int\left\{ \frac{d}{dx} \left( \log x \right)^2 \int x\ dx \right\}dx\]
\[ = \left( \log x \right)^2 \cdot \frac{x^2}{2} - \int\frac{\left( 2 \log x \right)}{x} \times \frac{x^2}{2} dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \int x_{II} \log x_I dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \int x\ dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x\ dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \cdot \frac{x^2}{2} - \int\frac{1}{x} \times \frac{x^2}{2}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \log x \cdot \frac{x^2}{2} + \frac{x^2}{4} + C\]
\[ = \frac{x^2}{2}\left[ \left( \log x \right)^2 - \log x + \frac{1}{2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 21 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

` ∫  1/ {1+ cos   3x}  ` dx


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×