हिंदी

∫ ( Log X ) 2 ⋅ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( \log x \right)^2 \cdot x\ dx\]
योग

उत्तर

\[\int \left( \log x \right)_{}^2 {x \cdot}    dx\]
`    "Taking  log x"^2" as the first function and x as the second function ". `
\[ = \left( \log x \right)^2 \int xdx - \int\left\{ \frac{d}{dx} \left( \log x \right)^2 \int x\ dx \right\}dx\]
\[ = \left( \log x \right)^2 \cdot \frac{x^2}{2} - \int\frac{\left( 2 \log x \right)}{x} \times \frac{x^2}{2} dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \int x_{II} \log x_I dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \int x\ dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x\ dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \cdot \frac{x^2}{2} - \int\frac{1}{x} \times \frac{x^2}{2}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \log x \cdot \frac{x^2}{2} + \frac{x^2}{4} + C\]
\[ = \frac{x^2}{2}\left[ \left( \log x \right)^2 - \log x + \frac{1}{2} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 21 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int \sin^4 2x\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×