हिंदी

∫ 1 X 2 / 3 √ X 2 / 3 − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
योग

उत्तर

 

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[\text{ Let } x^\frac{1}{3} = t\]
\[ \Rightarrow \frac{1}{3} x^\frac{- 2}{3} dx = dt\]
\[ \Rightarrow \frac{1}{3 x^\frac{2}{3}} dx = dt\]
\[ \Rightarrow \frac{dx}{x^\frac{2}{3}} = 3 dt\]
\[Now, \int\frac{dx}{x^\frac{2}{3} \sqrt{x^\frac{2}{3} - 2^2}}\]
\[ = 3\int\frac{dt}{\sqrt{t^2 - 2^2}}\]
\[ = 3 \text{ log } \left| t + \sqrt{t^2 - 2^2} \right| + C\]
\[ = 3 \text{ log }\left| x^\frac{1}{3} + \sqrt{x^\frac{2}{3} - 4} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 13 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×