हिंदी

∫ 1 ( Sin X − 2 Cos X ) ( 2 Sin X + Cos X ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
योग

उत्तर

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} dx\]

Dividing numerator and denominator by cos2x we get ,

\[I = \int\frac{\frac{1}{\cos^2 x}}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[ = \int\frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)} dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x  dx} = dt\]
\[ \therefore I = \int\frac{1}{\left( t - 2 \right) \left( 2t + 1 \right)}dt\]
\[ = \int\frac{1}{2 t^2 + t - 4t - 2}dt\]
\[ = \int\frac{1}{2 t^2 - 3t - 2}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3t}{2} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}dt\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ ln }\left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C ....................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{2 \left( t - 2 \right)}{2t + 1} \right| + C\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{2 \left( \tan x - 2 \right)}{2 \tan x + 1} \right| + C................ \left[ \because t = \tan x \right]\]
\[ = \frac{1}{5} \text{ ln} \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + \frac{1}{5} \text{ ln 2 + C }\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C'\]
\[\text{ where } \]
\[C' = C + \frac{1}{5} \text{ ln 2 }\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 56 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×