Advertisements
Advertisements
प्रश्न
विकल्प
\[\frac{1}{2}\] log (sec x2 + tan x2) + C
\[\frac{x^2}{2}\] log (sec x2 + tan x2) + C
2 log (sec x2 + tan x2) + C
none of these
उत्तर
\[\frac{1}{2}\] log (sec x2 + tan x2) + C
\[\text{ Let I }= \int x \sec x^2 dx\]
\[\text{ Putting x}^2 = t\]
\[ \Rightarrow 2x \text{ dx }= dt\]
\[ \Rightarrow x \text{ dx} = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\sec t \cdot dt\]
\[ = \frac{1}{2} \text{ log } \left| \sec t + \tan t \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \sec x^2 + \tan x^2 \right| + C \left( \because t = x^2 \right)\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]