हिंदी

∫ X ( X 2 + 4 ) √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have, }\]
\[I = \int \frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow 2x \text{ dx }= dt\]
\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{\left( t + 4 \right) \sqrt{t + 1}}\]
\[\text{ Again  Putting } t + 1 = p^2 \]
\[ \Rightarrow t = p^2 - 1\]
\[ \Rightarrow dt = 2p \text{ dp }\]
\[I = \frac{1}{2}\int \frac{2p \text{ dp }}{\left( p^2 - 1 + 4 \right)p}\]
\[ = \int \frac{dp}{p^2 + 3}\]
\[ = \int\frac{dp}{p^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{p}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{t + 1}}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \sqrt{\frac{x^2 + 1}{3}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 11 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×