Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ We have, }\]
\[I = \int \frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow 2x \text{ dx }= dt\]
\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{\left( t + 4 \right) \sqrt{t + 1}}\]
\[\text{ Again Putting } t + 1 = p^2 \]
\[ \Rightarrow t = p^2 - 1\]
\[ \Rightarrow dt = 2p \text{ dp }\]
\[I = \frac{1}{2}\int \frac{2p \text{ dp }}{\left( p^2 - 1 + 4 \right)p}\]
\[ = \int \frac{dp}{p^2 + 3}\]
\[ = \int\frac{dp}{p^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{p}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{t + 1}}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \sqrt{\frac{x^2 + 1}{3}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ \sqrt{tan x} sec^4 x dx `
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`