हिंदी

∫ X + 3 ( X + 1 ) 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
योग

उत्तर

\[\int\left[ \frac{x + 3}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{x + 1 + 2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{\left( x + 1 \right)}{\left( x + 1 \right)^4} + \frac{2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\frac{dx}{\left( x + 1 \right)^3} + 2\int\frac{dx}{\left( x + 1 \right)^4}\]
\[ = \int \left( x + 1 \right)^{- 3} dx + 2\int \left( x + 1 \right)^{- 4} dx\]
\[ = \left[ \frac{\left( x + 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + 2\left[ \frac{\left( x + 1 \right)^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{2} \left( x + 1 \right)^{- 2} - \frac{2}{3} \left( x + 1 \right)^{- 3} + C\]
\[ = -  \frac{1}{2 \left( x + 1 \right)^2} - \frac{2}{3 \left( x + 1 \right)^3} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 4 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \cos x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×