मराठी

∫ X + 3 ( X + 1 ) 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
बेरीज

उत्तर

\[\int\left[ \frac{x + 3}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{x + 1 + 2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{\left( x + 1 \right)}{\left( x + 1 \right)^4} + \frac{2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\frac{dx}{\left( x + 1 \right)^3} + 2\int\frac{dx}{\left( x + 1 \right)^4}\]
\[ = \int \left( x + 1 \right)^{- 3} dx + 2\int \left( x + 1 \right)^{- 4} dx\]
\[ = \left[ \frac{\left( x + 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + 2\left[ \frac{\left( x + 1 \right)^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{2} \left( x + 1 \right)^{- 2} - \frac{2}{3} \left( x + 1 \right)^{- 3} + C\]
\[ = -  \frac{1}{2 \left( x + 1 \right)^2} - \frac{2}{3 \left( x + 1 \right)^3} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 4 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×