Advertisements
Advertisements
प्रश्न
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
बेरीज
उत्तर
` ∫ sin x \sqrt{ 1 + \text{cos 2 x dx} `
` = ∫ sin x . \sqrt{ 2cos ^2 x} dx ` ` [∴ 1 + cos 2x = 2 cos^2 X]`
\[ = \sqrt{2}\int\text{sin x }\text{cos x dx}\]
\[ = \frac{\sqrt{2}}{2}\int\text{2 }\text{sin x } \text{cos x dx}\]
\[ = \frac{1}{\sqrt{2}}\int\text{sin 2x dx}\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = \frac{- 1}{2\sqrt{2}}\cos 2x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]