Advertisements
Advertisements
प्रश्न
पर्याय
- \[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
- \[- \frac{1}{e^x + e^{- x}} + C\]
- \[\frac{- 1}{\left( e^x + 1 \right)^2} + C\]
- \[\frac{1}{e^x - e^{- x}} + C\]
उत्तर
\[ = \int\frac{2 dx}{\left( e^x + \frac{1}{e^x} \right)^2}\]
\[ = 2\int\frac{e^{2x} dx}{\left( e^{2x} + 1 \right)^2}\]
\[\text{Let }e^{2x} + 1 = t\]
\[ \Rightarrow e^{2x} \cdot 2 dx = dt\]
\[ \Rightarrow e^{2x} \cdot dx = \frac{dt}{2}\]
\[ \therefore I = 2 \times \frac{1}{2}\int\frac{dt}{t^2}\]
\[ = - \frac{1}{t} + C\]
\[ = - \frac{1}{e^{2x} + 1} + C ...............\left( \because t = e^{2x} + 1 \right)\]
Dividing numerator and denominator by ex
\[\Rightarrow I = \frac{- \frac{1}{e^x}}{e^x + \frac{1}{e^x}}\]
\[ = \frac{- e^{- x}}{e^x + e^{- x}} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
` ∫ tan x sec^4 x dx `
Evaluate the following integrals:
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]