मराठी

∫ 2 ( E X + E − X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

पर्याय

  • \[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
  • \[- \frac{1}{e^x + e^{- x}} + C\]
  • \[\frac{- 1}{\left( e^x + 1 \right)^2} + C\]
  • \[\frac{1}{e^x - e^{- x}} + C\]
MCQ

उत्तर

\[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
 
 
\[\text{Let }I = \int\frac{2 dx}{\left( e^x + e^{- x} \right)^2}\]

\[ = \int\frac{2 dx}{\left( e^x + \frac{1}{e^x} \right)^2}\]

\[ = 2\int\frac{e^{2x} dx}{\left( e^{2x} + 1 \right)^2}\]

\[\text{Let }e^{2x} + 1 = t\]

\[ \Rightarrow e^{2x} \cdot 2 dx = dt\]

\[ \Rightarrow e^{2x} \cdot dx = \frac{dt}{2}\]

\[ \therefore I = 2 \times \frac{1}{2}\int\frac{dt}{t^2}\]

\[ = - \frac{1}{t} + C\]

\[ = - \frac{1}{e^{2x} + 1} + C ...............\left( \because t = e^{2x} + 1 \right)\]

Dividing numerator and denominator by ex

\[\Rightarrow I = \frac{- \frac{1}{e^x}}{e^x + \frac{1}{e^x}}\]

\[ = \frac{- e^{- x}}{e^x + e^{- x}} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 21 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×