Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \cot^4 \text{ x dx}\]
\[ = \int \cot^2 x \cdot \cot^2 \text{ x dx}\]
\[ = \int \cot^2 x \cdot \left( \text{ cosec}^2 x - 1 \right) \text{ dx}\]
\[ = \int \cot^2 x \cdot \text{ cosec }^2 \text{ x dx} - \int \cot^2 \text{ x dx}\]
\[ = \int \cot^2 x \cdot\text {cosec}^2 \text{ x dx}- \int\left( \text{cosec}^2 x - 1 \right) \text{ dx}\]
\[ \text{ Putting cot x = t in the Ist integral}\]
\[ \Rightarrow - \text{ cosec}^2 \text{ x dx} = dt\]
\[ \therefore I = - \int t^2 dt - \int\left( \text{cosec}^2 x - 1 \right) \text{ dx}\]
\[ = \frac{- t^3}{3} + \text{ cot x + x + C}\]
\[ = \frac{- \cot^3 x}{3} + \text{ cot x + x + C}................\left[ \because t = \text{ cot x} \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]