मराठी

∫ Cot 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^4 x\ dx\]
बेरीज

उत्तर

\[\text{ Let  I }= \int \cot^4 \text{ x  dx}\]
\[ = \int \cot^2 x \cdot \cot^2 \text{ x  dx}\]
\[ = \int \cot^2 x \cdot \left( \text{ cosec}^2 x - 1 \right) \text{  dx}\]
\[ = \int \cot^2 x \cdot \text{ cosec }^2 \text{ x  dx} - \int \cot^2 \text{ x  dx}\]
\[ = \int \cot^2 x \cdot\text {cosec}^2 \text{ x  dx}- \int\left( \text{cosec}^2 x - 1 \right) \text{  dx}\]
\[ \text{ Putting  cot   x   = t in the  Ist  integral}\]
\[ \Rightarrow - \text{ cosec}^2 \text{ x  dx} = dt\]
\[ \therefore I = - \int t^2 dt - \int\left( \text{cosec}^2 x - 1 \right) \text{   dx}\]
\[ = \frac{- t^3}{3} + \text{ cot x + x + C}\]
\[ = \frac{- \cot^3 x}{3} + \text{ cot x + x + C}................\left[ \because t = \text{ cot  x} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 31 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \cos x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×