मराठी

∫ X 2 + 1 ( 2 X + 1 ) ( X 2 − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x^2 - 1 \right)}\]

\[ = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[\text{Let }\frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{2x + 1} + \frac{B}{x - 1} + \frac{C}{x + 1}\]

\[ \Rightarrow \frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)\]

Putting `x - 1 = 0`

\[ \Rightarrow x = 1\]

\[1 + 1 = A \times 0 + B \left( 2 + 1 \right) \left( 1 + 1 \right) + C \times 0\]

\[ \Rightarrow 2 = B\left( 3 \right)\left( 2 \right)\]

\[ \Rightarrow B = \frac{1}{3}\]

Putting `x + 1 = 0`

\[ \Rightarrow x = - 1\]

\[1 + 1 = A \times 0 + B \times 0 + C \left( - 2 + 1 \right) \left( - 1 - 1 \right)\]

\[ \Rightarrow 2 = C \left( - 1 \right) \left( - 2 \right)\]

\[ \Rightarrow C = 1\]

Putting `2x + 1 = 0`

\[ \Rightarrow x = - \frac{1}{2}\]

\[ \left( - \frac{1}{2} \right)^2 + 1 = A \left( \frac{1}{4} - 1 \right)\]

\[ \Rightarrow \frac{1}{4} + 1 = A \left( - \frac{3}{4} \right)\]

\[ \Rightarrow \frac{5}{4} = A \left( - \frac{3}{4} \right)\]

\[A = - \frac{5}{3}\]

\[ \therefore I = - \frac{5}{3}\int\frac{dx}{2x + 1} + \frac{1}{3}\int\frac{dx}{x - 1} + \int\frac{dx}{x + 1}\]

\[ = - \frac{5}{3} \times \frac{\log \left| 2x + 1 \right|}{2} + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

\[ = - \frac{5}{6} \log \left| 2x + 1 \right| + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 21 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×