मराठी

Evaluate the Following Integrals: ∫ X 2 ( a 2 − X 2 ) S F R a C 3 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
बेरीज

उत्तर

\[\text{Let I }= \int\frac{x^2}{\left( a^2 - x^2 \right)^ {3/2}}dx\]

\[ \text{Let x }= a \cos\theta\]

`" On differentiating  both  sides, we get " `

`dx = - a sin  θ  dθ `

` ∴ I =  ∫   {a^2cos^2θ} /( a^2 - a^2cos^2 θ )^{3 /2}  ×- a sin  θ  dθ `

`  =  -  ∫   {a^3 cos^2θ  sinθ  } /( a^3 (1 - cos^2 θ )^{3 /2} dθ`

`  =  -  ∫   {cos^2θ   sin θ  } /( sin^3 θ ) dθ`

`  =  -  ∫   cot^2 θ  dθ`

 

\[ = - \int\left( \ cose c^2 \theta - 1 \right) d\theta\]

\[ = - \left( - \cot\theta - \theta \right) + c\]

\[ = \cot\theta + \theta + c\]

\[ = \cot\left( \cos^{- 1} \frac{x}{a} \right) + \cos^{- 1} \frac{x}{a} + c\]

\[ = \cot\left( \cot^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) + \cos^{- 1} \frac{x}{a} + c\]

\[ = \frac{x}{\sqrt{a^2 - x^2}} + \cos^{- 1} \frac{x}{a} + c\]

` Hence, ∫  x^2 /( a^2  - x^2) ^{3/2}dx   = x / \sqrt {a^2-x^2}  + cos ^-1   x/a  + c `

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.13 | Q 1 | पृष्ठ ७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int x^3 \cos x^4 dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cos^7 x \text{ dx  } \]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×