Advertisements
Advertisements
प्रश्न
\[\int x \text{ sin 2x dx }\]
बेरीज
उत्तर
\[\int x \text{ sin 2x dx }\]
` "Taking x as the first function and sin 2x as the second function " `.
\[ = x\int\text{ sin 2x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx }\right\}dx\]
\[ = \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx\]
\[ = \frac{- x \cos 2x}{2} + \frac{\sin 2x}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^6 x \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]