Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I }= \int\frac{dx}{p + q \tan x}\]
\[ = \int\frac{1}{p + \frac{q \sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{q \sin x + p \cos x}dx\]
\[\text{ Let cos x} = A \left(\text{ q sin x + p cos x} \right) + B \left( q \cos x - p \sin x \right)\]
\[ \Rightarrow \cos x = \left( Ap + Bq \right) \cos x + \left( Aq - Bp \right) \sin x\]
Comparing coefficients of like terms
\[Ap + Bq = 1 . . . \left( 1 \right)\]
\[Aq - Bp = 0 . . . \left( 2 \right)\]
\[\Rightarrow A p^2 + Bpq = p\]
\[ \Rightarrow A q^2 - Bpq = 0\]
\[ \Rightarrow A = \frac{p}{p^2 q^2}\]
Putting value of A in eq (1)
\[\frac{p^2}{p^2 + q^2} + Bq = 1\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]