Advertisements
Advertisements
प्रश्न
\[\int \sin^7 x \text{ dx }\]
बेरीज
उत्तर
∫ sin7 x dx
= ∫ sin6 x . sin x dx
= ∫ (sin2 x)3 sin x dx
= ∫ (1 – cos2 x)3 sin x dx
Let cos x = t
⇒ –sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos2 x)3 sin x dx
= ∫ (1 – t2)3 . (–dt)
= –∫ (1 – t6 – 3t2 + 3t4) dt
\[= - \left[ t - \frac{t^7}{7} - t^3 + \frac{3 t^5}{5} \right] + C\]
\[ = - \left[ \cos x - \frac{\cos^7 x}{7} - \cos^3 x + \frac{3}{5} \cos^5 x \right] + C\]
\[ = - \cos x + \frac{1}{7} \cos^7 x + \cos^3 x - \frac{3}{5} \cos^5 x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]