मराठी

∫ ( X + 1 ) √ X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\text{ Also }, x + 1 = \lambda\frac{d}{dx}\left( x^2 - x + 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 2x - 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 2x - 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \left( 2\lambda \right)x + \mu - \lambda\]
\[\text{Equating the coefficient of like terms}\]
\[2\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
\[\text{ And }\]
\[\mu - \lambda = 1\]
\[ \Rightarrow \mu - \frac{1}{2} = 1\]
\[ \Rightarrow \mu = \frac{3}{2}\]
\[ \therefore I = \int\left[ \frac{1}{2}\left( 2x - 1 \right) + \frac{3}{2} \right] \sqrt{x^2 - x + 1}dx\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1}dx + \frac{3}{2}\int\sqrt{x^2 - x + 1}dx\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx}+ \frac{3}{2}\int \sqrt{x^2 - x + \frac{1}{4} - \frac{1}{4} + 1} \text{ dx}\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx} + \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \frac{3}{4}}\text{ dx}\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx}+ \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\text{ dx}\]
\[\text{ Let x}^2 - x + 1 = t\]
\[ \Rightarrow \left( 2x - 1 \right)dx = dt\]
\[ \therefore I = \frac{1}{2}\int\sqrt{t} \text{ dt }+ \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} dx\]
\[ = \frac{1}{2} \times \left( \frac{t^\frac{3}{2}}{\frac{3}{2}} \right) + \frac{3}{2}\left[ \frac{x - \frac{1}{2}}{2} \sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log } \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]
\[ = \frac{1}{3} \left( x^2 - x + 1 \right)^\frac{3}{2} + \frac{3}{8}\left( 2x - 1 \right) \sqrt{x^2 - x + 1} + \frac{9}{16}\text{ log } \left| x - \frac{1}{2} + \sqrt{x^2 - x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 1 | पृष्ठ १५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×