मराठी

∫ 5 X + 7 √ ( X − 5 ) ( X − 4 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
बेरीज
चूक किंवा बरोबर

उत्तर

\[\text{We have}, \]

\[I = \int\left( \frac{5x + 7}{\sqrt{\left( x - 5 \right)\left( x - 4 \right)}} \right) dx\]

\[ = \int\left( \frac{5x + 7}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[\text{ Let  5x + 7 }= A \frac{d}{dx} \left( x^2 - 9x + 20 \right) + B\]

\[ \Rightarrow 5x + 7 = A \left( 2x - 9 \right) + B\]

\[\text{Equating Coefficients of like terms}\]

\[2A = 5\]

\[ \Rightarrow A = \frac{5}{2}\]

\[\text{ And }\]

\[ - 9A + B = 7\]

\[ \Rightarrow - 9 \times \frac{5}{2} + B = 7\]

\[ \Rightarrow B = 7 + \frac{45}{2}\]

\[ \Rightarrow B = \frac{59}{2}\]

\[ \therefore I = \int\left( \frac{\frac{5}{2} \left( 2x - 9 \right) + \frac{59}{2}}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[ = \frac{5}{2}\int\frac{\left( 2x - 9 \right) dx}{\sqrt{x^2 - 9x + 20}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + 20}}\]

\[\text{ Putting x}^2 - 9x + 20 = t\]

\[ \Rightarrow \left( 2x - 9 \right) dx = dt\]

\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + \left( \frac{9}{2} \right)^2 - \left( \frac{9}{2} \right)^2 + 20}}\]

\[ = \frac{5}{2}\int t^{- \frac{1}{2}} \text{ dt }+ \frac{59}{2}\int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \frac{81 + 80}{4}}}\]

\[ = \frac{5}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{59}{2} \int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]

\[ = \frac{5}{2} \times 2\sqrt{t} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]

\[ = 5\sqrt{t} + \frac{59}{2} \text{ log} \left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

\[ = 5\sqrt{x^2 - 9x + 20} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 52 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×