मराठी

∫ ( 2 X 2 + 3 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]
बेरीज

उत्तर

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\text{ Let x  }+ 2 = t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\int\left[ 2 \left( t - 2 \right)^2 + 3 \right]\sqrt{t}\text{   dt }\]
\[ = \int\left( 2\sqrt{t} \left( t^2 - 4t + 4 \right) + 3\sqrt{t} \right)\text{ dt }\]
\[ = 2\int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right) dt + 3\int t^\frac{1}{2} \text{ dt  }\]
\[ = 2\left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} - \frac{4 t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{4 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 3\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 2\left[ \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} \right] + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{16}{3} t^\frac{3}{2} + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{22}{3} t^\frac{3}{2} + C\]
\[ = \frac{4}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{16}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{22}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 5 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×