English

∫ ( 2 X 2 + 3 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]
Sum

Solution

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\text{ Let x  }+ 2 = t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\int\left[ 2 \left( t - 2 \right)^2 + 3 \right]\sqrt{t}\text{   dt }\]
\[ = \int\left( 2\sqrt{t} \left( t^2 - 4t + 4 \right) + 3\sqrt{t} \right)\text{ dt }\]
\[ = 2\int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right) dt + 3\int t^\frac{1}{2} \text{ dt  }\]
\[ = 2\left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} - \frac{4 t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{4 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 3\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 2\left[ \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} \right] + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{16}{3} t^\frac{3}{2} + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{22}{3} t^\frac{3}{2} + C\]
\[ = \frac{4}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{16}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{22}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 5 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int \cos^2 \text{nx dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×