English

∫ 2 X + 1 ( X + 1 ) ( X − 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
Sum

Solution

\[\int\frac{\left( 2x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)} dx \]
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} .........(1)\]
\[ \Rightarrow \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A\left( x - 2 \right) + B\left( x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)}\]
\[\text{Then, }\left( 2x + 1 \right) = A\left( x - 2 \right) + B\left( x + 1 \right) ............(2)\]
\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (2) }\]
\[ \Rightarrow 2 \times 2 + 1 = A \times 0 + B\left( 2 + 1 \right)\]
\[ \Rightarrow B = \frac{5}{3}\]
\[\text{Putting }\left( x + 1 \right) = 0\text{ or }x = - 1\text{ in eq. (2)} \]
\[2 \times - 1 + 1 + A\left( - 1 - 2 \right) + B \times 0\]
\[ \Rightarrow - 1 = A\left( - 3 \right)\]
\[ \Rightarrow A = \frac{1}{3}\]
\[\text{Substituting the values of A and B in eq. (1) , we get} \]
\[ \therefore \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\left( x + 1 \right) + \frac{5}{3}\left( x - 2 \right)\]
\[\int\frac{\left( 2x + 1 \right)dx}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\int\frac{1}{x + 1}dx + \frac{5}{3}\int\frac{1}{x - 2}dx\]
\[ = \frac{1}{3} \ln \left| x + 1 \right| + \frac{5}{3} \ln \left| x - 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 1 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×