Advertisements
Advertisements
Question
Solution
\[\int\frac{\left( 2x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)} dx \]
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} .........(1)\]
\[ \Rightarrow \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A\left( x - 2 \right) + B\left( x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)}\]
\[\text{Then, }\left( 2x + 1 \right) = A\left( x - 2 \right) + B\left( x + 1 \right) ............(2)\]
\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (2) }\]
\[ \Rightarrow 2 \times 2 + 1 = A \times 0 + B\left( 2 + 1 \right)\]
\[ \Rightarrow B = \frac{5}{3}\]
\[\text{Putting }\left( x + 1 \right) = 0\text{ or }x = - 1\text{ in eq. (2)} \]
\[2 \times - 1 + 1 + A\left( - 1 - 2 \right) + B \times 0\]
\[ \Rightarrow - 1 = A\left( - 3 \right)\]
\[ \Rightarrow A = \frac{1}{3}\]
\[\text{Substituting the values of A and B in eq. (1) , we get} \]
\[ \therefore \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\left( x + 1 \right) + \frac{5}{3}\left( x - 2 \right)\]
\[\int\frac{\left( 2x + 1 \right)dx}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\int\frac{1}{x + 1}dx + \frac{5}{3}\int\frac{1}{x - 2}dx\]
\[ = \frac{1}{3} \ln \left| x + 1 \right| + \frac{5}{3} \ln \left| x - 2 \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Integrate the following integrals:
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]