English

\[\Int\Frac{2x + 1}{\Sqrt{3x + 2}} Dx\] - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
Sum

Solution

\[\int\left( \frac{2x + 1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{6x + 3}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{6x + 4 - 1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{2\left( 3x + 2 \right)}{\sqrt{3x + 2}} - \frac{1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( 2\sqrt{3x + 2} - \frac{1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\left[ \int2 \left( 3x + 2 \right)^\frac{1}{2} dx - \int \left( 3x + 2 \right)^{- \frac{1}{2}} dx \right]\]
\[ = \frac{1}{3}\left[ 2\left\{ \frac{\left( 3x + 2 \right)^\frac{1}{2} + 1}{3 \left( \frac{1}{2} + 1 \right)} \right\} - \frac{\left( 3x + 2 \right)^{- \frac{1}{2} + 1}}{\left( - \frac{1}{2} + 1 \right) \times 3} \right] + C\]
\[ = \frac{1}{3}\left[ \frac{4}{9} \left( 3x + 2 \right)^\frac{3}{2} - \frac{2}{3} \left( 3x + 2 \right)^\frac{1}{2} \right] + C\]
\[ = \frac{4}{27} \left( 3x + 2 \right)^\frac{3}{2} - \frac{2}{9} \left( 3x + 2 \right)^\frac{1}{2} + C\]
\[ = \sqrt{3x + 2}\left( \frac{4}{27}\left( 3x + 2 \right) - \frac{2}{9} \right) + C\]
\[ = \sqrt{3x + 2}\left( \frac{4\left( 3x + 2 \right) - 6}{27} \right) + C\]
\[ = \sqrt{3x + 2}\left( \frac{12x + 8 - 6}{27} \right) + C\]
\[ = \frac{2}{27}\left( 6x + 1 \right)\sqrt{3x + 2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.05 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.05 | Q 5 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cot^5 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×