Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
Sum
Solution
\[\int\frac{dx}{\sqrt{1 + 4 x^2}}\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]