Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{\sqrt{1 + 4 x^2}}\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
`∫ cos ^4 2x dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int \log_{10} x\ dx\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .