मराठी

∫ X √ X + a − √ X + B D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
बेरीज

उत्तर

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[ = \int\frac{x}{\sqrt{x + a} - \sqrt{x + b}} \times \frac{\sqrt{x + a} + \sqrt{x + b}}{\sqrt{x + a} + \sqrt{x + b}}dx\]
\[ = \int\frac{x\left( \sqrt{x + a} + \sqrt{x + b} \right)}{\left( \sqrt{x + a} \right)^2 - \left( \sqrt{x + b} \right)^2}dx\]
\[ = ∫  \frac{x\left( \sqrt{x + a} + \sqrt{x + b} \right)}{x + a - x - b}dx\]
\[ = \frac{1}{a - b}\  ∫ x\left( \sqrt{x + a} + \sqrt{x + b} \right) dx\]
\[ = \frac{1}{a - b}\left[  ∫ x \left( \sqrt{x + a} \right) dx + \ ∫x\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ ∫ \left( x + a - a \right)\left( \sqrt{x + a} \right) dx + \int\left( x + b - b \right)\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ \int\left( x + a \right)\left( \sqrt{x + a} \right) dx - a\int\left( \sqrt{x + a} \right) dx + \int\left( x + b \right)\left( \sqrt{x + b} \right) dx - b\int\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ \int \left( x + a \right)^\frac{3}{2} dx - a\int \left( x + a \right)^\frac{1}{2} dx + \int \left( x + b \right)^\frac{3}{2} dx - b\int \left( x + b \right)^\frac{1}{2} dx \right]\]
\[ = \frac{1}{a - b}\left[ \frac{\left( x + a \right)^\frac{5}{2}}{\frac{5}{2}} - a\frac{\left( x + a \right)^\frac{3}{2}}{\frac{3}{2}} + \frac{\left( x + b \right)^\frac{5}{2}}{\frac{5}{2}} - b\frac{\left( x + b \right)^\frac{3}{2}}{\frac{3}{2}} \right] + \text{c             where, c is an arbitrary constant}\]
\[ = \frac{1}{a - b}\left[ \frac{2}{5} \left( x + a \right)^\frac{5}{2} - \frac{2a}{3} \left( x + a \right)^\frac{3}{2} + \frac{2}{5} \left( x + b \right)^\frac{5}{2} - \frac{2b}{3} \left( x + b \right)^\frac{3}{2} \right] + \text{c             where, c is an arbitrary constant}\]
\[Hence, \int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx = \frac{1}{a - b}\left[ \frac{2}{5} \left( x + a \right)^\frac{5}{2} - \frac{2a}{3} \left( x + a \right)^\frac{3}{2} + \frac{2}{5} \left( x + b \right)^\frac{5}{2} - \frac{2b}{3} \left( x + b \right)^\frac{3}{2} \right] + \text{c           where, c is an arbitrary constant}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 10 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{3 + 4 \cot x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int {cosec}^3 x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×