Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ We have, } \]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting x }- 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{1}{t} \right) \sqrt{\left( 1 + \frac{1}{t} \right)^2 + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\sqrt{1 + \frac{1}{t^2} + \frac{2}{t} + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + 1 + 2t + t^2}}{t}}\]
\[ = \int \frac{- dt}{\sqrt{2 t^2 + 2t + 1}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{t^2 + t + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{\sqrt{2}}\text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{1}{4}} \right| + \text{ C where t} = \frac{1}{x - 1}\]
APPEARS IN
संबंधित प्रश्न
` ∫ tan^5 x dx `
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]