मराठी

∫ 1 ( X − 1 ) √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have, } \]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting  x }- 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{1}{t} \right) \sqrt{\left( 1 + \frac{1}{t} \right)^2 + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\sqrt{1 + \frac{1}{t^2} + \frac{2}{t} + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + 1 + 2t + t^2}}{t}}\]
\[ = \int \frac{- dt}{\sqrt{2 t^2 + 2t + 1}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{t^2 + t + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{\sqrt{2}}\text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{1}{4}} \right| + \text{ C where t} = \frac{1}{x - 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 8 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×