मराठी

∫ X ( X 2 + 2 X + 2 ) √ X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{x \text{ dx}}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}}\]
\[ = \int \frac{x \text{ dx}}{\left[ \left( x + 1 \right)^2 + 1 \right] \sqrt{x + 1}}\]
\[\text{ Putting  x }+ 1 = t^2 \]
\[ \Rightarrow x = t^2 - 1\]
\[\text{ Diff both  sides}\]
\[dx = 2t \text{ dt}\]
\[ \therefore I = \int \frac{\left( t^2 - 1 \right)2t dt}{\left[ \left( t^2 \right)^2 + 1 \right] t}\]
\[ = 2\int \frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]
\[\text{Dividing numerator and denominator by} \text{ t}^2 \]
\[I = 2\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[= 2\int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = 2\int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting  t }+ \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dp\]
\[I = 2\int \frac{dp}{p^2 - \left( \sqrt{2} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{p - \sqrt{2}}{p + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{p - \sqrt{2}}{P + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{x + 1 - \sqrt{2\left( x + 1 \right)} + 1}{x + 1 + \sqrt{2\left( x + 1 \right)} + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{\left( x + 2 \right) - \sqrt{2\left( x + 1 \right)}}{\left( x + 2 \right) + \sqrt{2\left( x + 1 \right)}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 7 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×