Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)}dx\]
\[ = \int\frac{\left( x^3 + 2^3 \right) \left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)}dx \]
\[ = \int\frac{\left( x + 2 \right) \left( x^2 - 2x + 4 \right) \left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)} dx \left[ \therefore a^3 + b^3 = \left( a + b \right) \left( a^2 - ab + b^2 \right) \right]\]
\[ = \int \left( x + 2 \right) \left( x - 1 \right)dx\]
\[ = \int\left( x^2 - x + 2x - 2 \right)dx\]
\[ = \int\left( x^2 + x - 2 \right)dx\]
\[ = \int x^2 dx + \text{∫ x dx} - 2 \int1dx\]
\[ = \frac{x^3}{3} + \frac{x^2}{2} - 2x + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]