मराठी

∫ 1 Sin 4 X + Cos 4 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]

बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{\sin^4 x + \cos^4 x}\]

Dividing numerator and denominator by cos4x

\[I = \int\frac{\sec^4 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\sec^2 x \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\left( 1 + \tan^2 x \right) \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[\text{ Putting tan x = t}\]

\[ \Rightarrow \sec^2 \text{ x dx = dt}\]

\[ \therefore I = \int\frac{\left( 1 + t^2 \right) dt}{t^4 + 1}\]

\[ = \int\frac{\left( \frac{1}{t^2} + 1 \right) dt}{t^2 + \frac{1}{t^2}}\]

\[ = \int\frac{\left( 1 + \frac{1}{t^2} \right)}{\left( t - \frac{1}{t} \right)^2 + 2}dt\]

\[\text{ Putting t  }- \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[ \therefore I = \int\frac{1}{p^2 + \left( \sqrt{2} \right)^2}dp\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{p}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} \text{ t }} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{\tan^2 x - 1}{\sqrt{2} \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \times \frac{1 - \tan^2 x}{2 \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{- \sqrt{2}}{\tan 2x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \cot 2x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 68 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×