मराठी

∫ 1 Sin 3 X Cos 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sin^3 x . \cos^5 x}dx\]
`  "Dividing  numerator  and denominator  by" cos^8 x  `
\[ = \int\frac{\frac{1}{\cos^8 x}dx}{\frac{\sin^3 x}{\cos^3 x}}\]
\[ = \int\frac{\sec^8 x}{\tan^3 x}dx\]
\[ = \int\frac{\sec^6 x . \sec^2 x dx}{\tan^3 x}\]
\[ = \int\frac{\left( 1 + \tan^2 x \right)^3 . \sec^2 x dx}{\tan^3 x}\]
\[Let \tan x = t\]
` ⇒  sec^2 x  dx  = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right)^3 . \sec^2 x dx}{\tan^3 x}\]
\[ = \int\frac{\left( 1 + t^2 \right)^3}{t^3} . dt\]
\[ = \int\frac{1 + t^6 + 3 t^2 + 3 t^4}{t^3}dt\]
\[ = \int\left( \frac{1}{t^3} + t^3 + \frac{3}{t} + 3t \right)dt\]
\[ = \int t^{- 3} dt + \int t^3 dt + 3\int\frac{dt}{t} + 3\    ∫ t \text{ dt }\]
\[ = \left[ \frac{t^{- 3 + 1}}{- 3 + 1} \right] + \left[ \frac{t^{3 + 1}}{3 + 1} \right] + 3 \log \left| t \right| + \frac{3 t^2}{2} + C\]
\[ = - \frac{1}{2} \left( \tan x \right)^{- 2} + \frac{1}{4} \tan^4 x + 3 \log \left| \tan x \right| + \frac{3}{2} \tan^2 x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.12 | Q 11 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^x \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×