मराठी

∫ 1 Sin 4 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sin^4 x . \cos^2 x}\]
`  " Dividing   numerator  and denominator  " by   sin^2 x` 
\[ = \int\frac{\frac{1}{\sin^2 x}}{\sin^4 x . \cot^2 x}dx\]
\[ = \int\frac{{cosec}^6 x}{\cot^2}dx\]

 ` = ∫     { "cosec"^4  x   . "cosec"^2  x  dx}/cot^ 2 x `

` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[Let \cot x = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow - {cosec}^2 x \text{ dx } = dt\]
Now,` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[ = \int \left( \frac{1 + t^2}{t} \right)^2 \left( - dt \right)\]
\[ = - \int\frac{\left( 1 + t^4 + 2 t^2 \right)}{t^2}dt\]
\[ = - \int\left( t^{- 2} + t^2 + 2 \right)dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \left[ - \frac{1}{t} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \frac{1}{3} t^3 - 2t + \frac{1}{t} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \frac{1}{\cot x} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \tan x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.12 | Q 10 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int x \cos x\ dx\]

\[\int x^3 \text{ log x dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×