Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{\sin^4 x . \cos^2 x}\]
` " Dividing numerator and denominator " by sin^2 x`
\[ = \int\frac{\frac{1}{\sin^2 x}}{\sin^4 x . \cot^2 x}dx\]
\[ = \int\frac{{cosec}^6 x}{\cot^2}dx\]
` = ∫ { "cosec"^4 x . "cosec"^2 x dx}/cot^ 2 x `
` = ∫ { ("1 +cot"^2 x )^2 . "cosec"^2 x dx}/cot^ 2 x `
\[Let \cot x = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow - {cosec}^2 x \text{ dx } = dt\]
Now,` = ∫ { ("1 +cot"^2 x )^2 . "cosec"^2 x dx}/cot^ 2 x `
\[ = \int \left( \frac{1 + t^2}{t} \right)^2 \left( - dt \right)\]
\[ = - \int\frac{\left( 1 + t^4 + 2 t^2 \right)}{t^2}dt\]
\[ = - \int\left( t^{- 2} + t^2 + 2 \right)dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \left[ - \frac{1}{t} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \frac{1}{3} t^3 - 2t + \frac{1}{t} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \frac{1}{\cot x} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \tan x + C\]
APPEARS IN
संबंधित प्रश्न
`∫ cos ^4 2x dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int \sec^4 x\ dx\]